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Long waves generated by ground motion 

By MONTGOMERY W. SLATKIN? 
University of California, Los Alamos Scientific Laboratory 

Los Alamos, New Mexico 87544 
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The initial-value problem for waves generated by ground motion near a shore is 
solved using linear shallow water theory and an exponential bottom profile. 
It is found that long waves can be trapped along the coast and travel with the 
deep water wave speed, (gh)$. The energy in these waves decays with x-4 instead 
of x-1 so that more energy would be observed on this coast than expected on the 
basis of deep water wave amplitudes. 

1. Introduction 
In  this paper, we are concerned with the problem of linear shallow water 

waves generated by bottom movement as might be caused by an earthquake. 
Several workers have considered the generation of waves in mid-ocean (see 
Kajiura 1963) and recently Hwang (1970) has solved the two-dimensional 
problem for waves generated near a shore. Here we will consider the three- 
dimensional problem near a shore, and, specifically, the amount of energy which 
goes into edge waves. 

The possibility of edge waves was first discovered by Stokes (Lamb 1945), but 
they were considered to be unimportant. Ursell ( 1961), extending Stokes’s 
analysis of a straight shore with a linear bottom profile, showed that the Stokes 
edge waves are the first of an infinite series of edge wave modes. Greenspan (1956) 
demonstrated that one or more of the edge wave modes can be excited by a 
pressure disturbance moving along the coast. Using observations of surges 
following storms along the Atlantic coast, he showed that only the lowest-order 
mode is excited by these storms. Greenspan and Ursell both assumed a linear 
bottom profile so that the water approached infinite depth far from the shore. 
Longuet-Higgins (1966) has shown that if the water approaches a finite depth 
then there are only a finite number of edge wave modes. 

M u d ,  Snodgrass & Gilbert (1 964) calculated the dispersion function ((f, n)  dia- 
gram in their terminology) and compared their results with measurements made 
on the California continental shelf. They found that most of the energy in long 
waves (5-100km wavelength) is contained in the trapped modes. They also 
pointed out that in the limit of long wavelength, the wave speed of the edge 
waves approaches (gh,,)* where h, is the depth far from the shore. This result is 
expected on simple physical grounds and is found to be important in the problem 
treated here. 
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The question to be treated is how much energy goes into the different 
edge waves as the result of a disturbance localized in space and time. One 
interesting result is that if the water approaches infinite depth far from the shore 
then no edge waves are generated. This result follows from the fact that the 
speed of the edge waves generated by bottom movement is proportional to the 
deepwaterwave speed (gh,)). If h, approaches infinity, then theedge waves do not 
appear in the result. This explains why Greenspan did not find any other waves 
generated by the moving pressure disturbance, other than the one travelling 
with the storm, although his ‘storm’ began impulsively at t = 0. Had he chosen a 
bottom profile which was finite far from the shore, then edge waves other than 
the one moving with the storm would have appeared. The validity of his results is 
not changed by this because these other waves would have been an artifact of 
the impulsive beginning of the disturbance. 

The model here is necessarily artificial in order to get analytic results. It is 
most unlikely that the bottom profile used could be matched to an actual shore. 
However, the results of this model can illustrate the underlying simplicity of the 
generation of edge waves and can be used t o  interpret more exact numerical 
models. The main result is that there can be a leading edge wave generated with a 
wave speed of (gh,)*. There are also other edge waves generated with a smaller 
speed, but these may not be of interest because of the difference in arrival times, 
and will not be considered. The leading edge wave decays more slowly than 
the  non-trapped waves which have approximately the same arrival time. 

2. Themodel 
The equation of linear shallow water theory in a non-rotating system is 

Pt; a2h 
g(V. (hVC)) - - = - -, 

a t 2  a t 2  

where t; is the wave amplitude and x = - h(x, y, t )  is the location of the bottom. 
If we assume that 

(2) w, y, t )  = h,(y) + h,.(x, Y, t )  

with h, < h,, then the lowest-order equation is! 

h,(y) is then the equilibrium bottom profile which we will assume is defined in 
0 6 y < 00. The shore is a t  y = 0 and the boundary condition which must be 
satisfied there is (ac/;lay)l,=, = 0 if h,(O) =+ 0 or <l,=o finite if h,(O) = 0. 

We can take the Fourier transform in x and the Laplace transform in t to get 

where 
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and 
a% 

~ ( k , y ,  s) = -Im eikzI0 e - & d d t d x + s & c , y , t  = O ) + - ( k , y , t  = 0). (6) 
--OD at2 at 

The method of solution does not depend on whether the waves are initiated by 
ground motion of finite duration or by initial surface displacement caused by 
impulsive ground motion. Hwang (1970) has shown that, for long waves, the 
effect of instantaneous ground motion is equivalent to a displacement of the 
surface at t = 0. 

In  the specific model considered here, the equilibrium bottom profile is 

h,(y) = ho( 1 - e - a y ) ,  (7) 

where ha and a are specified. This choice has the advantage of being finite at 00 and 
analytic in 0 < y < 00, so there is no need to match solutions at any interior 
point. If we substitute (7) into (4) and introduce the new variable 

u = e-W, 
the resulting equation is 

s2 k2 

a g o  a2 
-+-( l -u)  

= G(k, u, s). (8) 

The problem then is to solve this equation subject to the condition that [ be 
bite at u = 0 and u = 1 along with the radiation condition. This is most easily 
done by finding the eigenfunctions to the appropriate homogeneous equation 
and expanding G in terms of these eigenfunctions. As usual, the eigenfunctions 
can be interpreted as the Merent  possible wave modes. 

3. Eigenfunctions 
We want the solution to the equation 

u2( 1 - u)f” + u( 1 - 2u)f’ - (kZ/a2) (1 - .)f = - hf (9) 

with f finite at u = 0 , l .  If we look for a power series solution of the form 
m 

ni=0 
f(u) = anurn+?, 

then the indicia1 equation is 

and the recursion relation is 
y2 = (k2/a2) - h 

Assuming that P/az is real, then ifk2/a2 > A, only the positive root can be chosen 
while if k2/a2 c A, then both roots can be used and the solution is the sum of two 
series. 

In  the first case ( A  < k2/a2) ,  the series defined by (12) will not converge at  
u = 1 unless it terminates. Thus, A is restricted to values which satisfy 

(13) [ (kz /aZ)  -A]& = +{ - (2n - 1)  + [l + 4k2/a2]&). 
6-2 
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An additional restriction is that the right-hand side of (13) must be positive or 

Therefore, there are a finite number of eigenvalues, A, (at least one) with poly- 
nominal eigenfunctions. The number of eigenvalues depends on k2/a2. 

In the second case ( A  > k2/a2)  the solution to (9) is the sum of two series, each 
of which is guaranteed to converge a t  u = 0. The solution can be made to con- 
verge a t  u = 1 only if the series are subtracted. Therefore, any h > k2/a2 is an 
eigenvalue and the eigenfunction is 

(15) 1 "  i[h-ka/a21* - u.u-i[A-k2/a2]i 
fA(U) = ; I: (UnU 1 9  

n=O 

which is real. 

system. The discrete eigenfunctions f, are all of the form 
For the interpretation of the eigenfunctions, we must return to they co-ordinate 

m 

n=O 
f,(y) = exp { - W2b2 - h , l 4 4  c an exp ( -any), (16) 

which are exponentially decaying at y --f 00. These are the trapped modes. If we 
were looking for a solution to the homogeneous wave equation of the form 

<(x, y, t )  = f(y) exp (ikx- iwt),  (17) 

then, in (9), h would be replaced by w2/ghoa2 and (13) would determine the 
periods of the trapped waves of given wavelength. The trapped modes must 
satisfy 

wi/gho < h2 

or T: > ghoL2 (18) 

where the T, are the periods and L is the wavelength of the trapped waves. Thus, 
longer period waves are trapped. 

For the continuous part of the spectrum, for large y, only the first term in (15) 
will contribute. 

1 
fh(y) +;u,(exp {i[h - k2/a2]4ay} -exp {i[h - k2/a2]3ay}). (19) 

Therefore, 

1 

2. 
<+T.aoe-iut(exp{i(kx+ [(w2/gho) - k2]iy)}--exp{i(kx- [(w2/gho) - k2]3y)}). 

(20) 
This represents the sum of two waves, each making an angle of 8 = wt-1 

kl[(6J2/ShO) - k21i 

with the shore. Two waves are present so that the net effect is a disturbance 
moving along the shore. As w2/gho increases from k2 to inh i ty ,  0 goes from 0 to &I-, 
so that all directions are represented. Waves of infinitely short periods are 
travelling perpendicular to shore. 
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It is easy to show that the eigenfunctions are mutually orthogonal with a 
weighting function llu. 

( 2 1 )  

where 

and 

The second normalization factor can be found by direct integration 

s,’ i f A (  u) fA , (  u) d u  = NA &(A - A’). 

x [lm (a m ui[A’-kz/az14 - uz exp - i r ~ ’  - ~ 2 / a 2 1 & l ) u m ]  = N , ~ ( A  - A’). 
2,=0 

The only term which could contribute a 6 function is the one with m = 0, n = 0. 
In  this term we can exchange variables to u = e-t to get 

If we define fA to have a,, = 1 ,  then NA = 4n[A-k2/a2]4 .  
A question which is less easily answered is the completeness of the eigen- 

functions. We shall assume that any function which is analytic in [0, 11 can be 
expanded in the form 

where 

and 

This assumption is reasonable on physical grounds because all the waves of 
interest are included. If there were a function for which all of the c’s were 0, then 
there could be a disturbance which would generate no waves of the type described 
by these eigenfunctions. 

4. Forced motion 
With the above analysis we can work out the details of the solution to a given 

problem. Here, we will consider waves initiated by ground motion of fhite 
extent in space and time with zero total displacement and zero initial conditions. 
This is more complicated than the initial-value problem, but the method of 
solution and basic results are the same. Let us assume 
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with 

and 

If we multiply each side of (8) by l/(NAu)fA(u) (with A one of the discrete or 
continuous eigenvalues) and integrate from 0 to 1, the result is 

where 

(29) 

The integral for d ,  can be evaluated by integrating the series for c, term by term 

From (29) and (24) we can write 

(32) 

Since the d's do not depend on 8,  it is easier to invert the Laplace transform first. 
We want to calculate 

There are four poles in the s plane but the contribution from the two at  & (27~ /7 ) i  
will vanish for t > 7. These represent the forced motion of the system and need not 
concern us. We are interested in the waves observed far from the source. The 
contribution from the poles at & ia(ghoh)* is 

(1  - exp { - ia[ghoh]t~})  exp {iat[ghoh]8} 
(2??'/7)2 ( 1  /a2&) - h 

+- (1 - exp {ioc[ghOh]b}) exp { - iat[gh,h];}) . (34) 
(2n/7)2 ( l/a2gho) - h 
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The first term will produce the wave travelling in the + x direction and the second 
a wave in the -x direction. It is sufficient to consider only x > 0. 

We must choose the contour in the k plane so that c+ represents a wave travelling 
away from the source for x > 0. To simplify matters we will treat the summation 
and the integral part of (35) separately. 

We want the poles and branch points of the terms in the sum. First, there will 
be poles when the A, = ( 2 ; r r / ~ ) ~  ( l/a2gh,). From (13) 

(- (2n - 1 )  + [l + 4k /a ] 
2 "4" An = (k2 /a2)  - (36) 

and there are poles on the real axis when 

(37) 
[?&(F)2&JL - (2n - 1 )  + [l + 4k2/a2]4 

has a real solution. This is most easily determined by a simple graphical analysis. 
The left-hand side of (37) is greater than the right-hand side by (272 - 1) for large z. 
From the simple character of the functions, then (37) has a real solution only if 
the right-hand side is positive at k2/a2 = ( 2 7 ~ / 7 ) ~  ( l/azgho). In  others words, for 

2 

those n which satisfy 

the corresponding terms in the sum (35) have poles on the real k axis. There is 
always one such pair of poles. The exact location of these poles must be deter- 
mined numerically. 

The dn all have the form 

However, for real k, [(k2/a2) - Ak]3 > 0 so this term will contribute no poles on the 
real a.xis. Similarly, the a, all have factors 

which will vanish at  y = -&j. Since y is positive for real k, these factors also 
contribute no real poles. The same argument applies to thef,(k, u). Therefore, the 
only poles on the real axis are the solutions to (37). The condition (38) determines 
the number of edge wave modes which can be excited by the disturbance. There 
is also a branch point when h,(k) = 0 or when 

- am(m - 1 )  
2m-1 * 

k =  
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If we choose the inversion contour to go under the poles on the real axis, then 
when x > (gh,)*t, the contour can be closed in the lower-half plane to give 0. The 
contributions from the poles in the lower-half plane are cancelled by similar 
terms from the second half of the solution, c-. 'When x < (gh,)*t is is easiest to use 
asteepest descent method toevaluate part of the integral. We will have to evaluate 
a series of integrals of the form 

where $(k)  has no poles on the real k axis. 
The stationary phase point for (42)  is at 

or (42) 
X k 2n-- 1 -- 

&h0]4 t - [h,(k) (1 + 4k2/a2)]* ' 

The right-hand side is the groupvelocity of edge waves with wave-number k. For 
small k, V,  -+ [sh,]*. 

For a complete description of the solution, (42) must be evaluated for different 
values ofx/t. However,$he largest contribution willbe when $(k )  has a maximum. 
Excluding the pole, +(k) has a maximum at k = 0. This fact simplifies the result 
because, for small k ,  only the first edge wave mode (m = 1) need be considered. 
If we try to evaluate the integral with k = 0, some mathematical difficulties 
arise because the problem is degenerate at that point. To avoid this problem, we 
let x = (gh,)* (t - [) with 5 < 1. Since we expect, the solution to (44) to be small, we 
can expand in terms of k2/a2 to find the approximate solution. For nz = 1 

h, + aDS/tI*. (43) 

The stationary phase path through k = k, is along the line Re k = Im k .  If we 
deform the path of integration to follow this path, then the only pole included 
is the one on the positive real axis. The contribution from the steepest descent 
path is approximately 

for [(gh,)t < T and is O @ )  for &(gh,)i > 7.  Because the disturbance is of finite 
extent, theleading edgewave isof length (gh,)t r .  The contribution from the poleis 

exp(i(k,z-~[gh,h,(k,)ltt)} (BJ 7 < (gho)'( t-T),  0, > (qho)'(t-7), 

(45) 

where k, is the location of the pole. This wave represents the forced motion of the 
system travelling with the phase velocity which is of finite duration because of the 
finite length of the disturbance. Thus, this wave will not be observed far from the 
source. 

The result is that the localized bottom movement will excite a leading edge 
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wave travelling with wave speed [gho]h. Other edge waves of smaller amplitude 
can be generated which will travel with different speeds. In this example these 
other waves would arise from the relative maxima of sin klx/k a t  k = (m + t)n-/Zx 
and would travel with the appropriate group velocity, which is less than but 
proportional to [gh,]*. Because of the mathematical difficulties mentioned, the 
wave amplitude has a factor 6-2. This is not a serious problem because the total 
wave energy is finite and can be found by evaluating 

The integral part of (35) represents the non-trapped waves generated by the 
ground motion. It is easiest to estimate this integral by the limit of a sum of 
contributions from the different wave frequencies 

N Sm dh$(h, k) exp {ia[gh,h]* t }  1: lim C $(A j ,  k )  exp {ia[ghohj]* t } ,  (46) 
k a / d  AA+O j = 1 

N - t m  

where hi = (k2/az)  + jAh. Now each term in the sum can be inverted and the limit 
taken afterward. 

We would like to determine whether the energy in edge waves and non-trapped 
waves is the same order of magnitude. If this is the case, then under some cir- 
cumstances unusually large disturbances could be recorded along a coast because 
the edge waves would not be subject to the l / r  geometrical decay. For this 
reason, we shall only look at those waves in the continuous part of the spectrum 
which have a wave speed relative to the shore of nearly [gho]3. If we let x = [gh,]*t 
( 1  - E )  then each term in the inversion of (46) is of the form 

(47) 
-m 

where 

and 

The stationary point (h’(kJ = 0 )  is at  

h(k) = - [gh,]*(k(l - E )  + [k2 +ja2Ah]$). 

ks N a[jAh/2~]4.  (48) 

There will be a significant contribution to the integral when #(k,) is large, i.e. 
when k, is small. Therefore, only the terms in the sum withj < (l/a2) 2.4Ah will 
be important. Returning to the integral form, we have 

where is the result of the stationary phase integral for each term in the sum. 
The upper limit is somewhat arbitrary for the approximate calculation, but it 
must be O(E) .  From the above analysis, we have 
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In  order to compare (49) and (44) (the edge wave with velocity [gho]4 we must 
choose 0 < E < r/ t .  For large t ,  B < 1 and (49) is given approximately by 

or 

As expected, the energy in this type of wave decreases with l / t  as opposed to 
l/t4 for the leading edge wave. Since the coefficients of (44) and (51) are of the same 
order of magnitude, we can expect that in some cases a significant fraction of 
energy can be put into a leading wave travelling with the deep water wave speed. 

5. Discussion 
The detaiIs of the above calculations have not been worked out because their 

purpose is to illustrate the possible importance of edge waves generated by 
explosions or earthquakes near a coast, not to provide a model for experimental 
results. Too many simplifying assumptions have been made for agreement with 
experiments to be anything more than accidental. The important result is that 
a leading edge wave travels with the deep wa,ter wave speed and might not be 
distinguishable from the non-trapped waves by arrival time. This is a possible 
explanation for the unusually large response of the harbour in Crescent City, 
California to the tsunami generated by the 1964 Alaskan earthquake. 

This result would also lend support to Carrier’s (1970) hypothesis that energy 
from a tsunami could be trapped or guided by an undersea ridge. Although the 
problem solved here is quite different, the result would suggest that some of the 
trapped waves on the ridge could also travel with the deep water wave speed. 
If observations stations are placed on or near such a ridge, they would indicate a 
larger deep water wave amplitude than stations off the ridge. As Carrier has 
pointed out, this could furnish a partial explanation for unusually large wave 
runups which have been measured. 

I wish to thank Dr K.H.Olsen of Los Alamos Scientific Laboratory and 
Dr Li-San Hwang of Tetra Tech, Inc., for their help during the preparation of 
this paper. This work was performed under the auspices of the U.S. Atomic 
Energy Commission. 

REFERENCES 

CARRIER, G .  F. 

GREENSPAN, H. P. 1956 J .  Fluid Mech. 1, 574-592. 
HWANG, L. 1970 Tetra Tech, Inc. Report. In preparation. 
KAJIURA, K. 1963 Bull. Earthquake Research Inst. Japan, 41, 535-571. 
LAMB, H. 1945 Hydrodynamics. Dover. 
LONGUET-HIGGINS, M. S. 1966 J .  Fluid Mech. 29, 781-821. 
MUNK, W., SNODGRASS, F. & GILBERT, F. 1964 J .  Fluid Mech. 20, 529-554. 
URSELL, F. 1951 Proc. Camb. Phil. SOC. 47, 347-358. 

1970 Mathematical problems in geophysics. American Math. Society 
Summer symposium (in the Press). 


